Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2312008, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38501999

RESUMO

Antiferromagnetic (AFM) materials are a pathway to spintronic memory and computing devices with unprecedented speed, energy efficiency, and bit density. Realizing this potential requires AFM devices with simultaneous electrical writing and reading of information, which are also compatible with established silicon-based manufacturing. Recent experiments have shown tunneling magnetoresistance (TMR) readout in epitaxial AFM tunnel junctions. However, these TMR structures are not grown using a silicon-compatible deposition process, and controlling their AFM order required external magnetic fields. Here it is shown three-terminal AFM tunnel junctions based on the noncollinear antiferromagnet PtMn3 , sputter-deposited on silicon. The devices simultaneously exhibit electrical switching using electric currents, and electrical readout by a large room-temperature TMR effect. First-principles calculations explain the TMR in terms of the momentum-resolved spin-dependent tunneling conduction in tunnel junctions with noncollinear AFM electrodes.

2.
Adv Mater ; : e2311591, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426690

RESUMO

2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal-oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO2 ) and silicon nitride (SiNx ). Here, a seeded growth technique for crystallizing CrTe2 films on amorphous SiNx /Si and SiO2 /Si substrates with a low thermal budget is presented. This fabrication process optimizes large-scale, granular atomic layers on amorphous substrates, yielding a substantial coercivity of 11.5 kilo-oersted, attributed to weak intergranular exchange coupling. Field-driven Néel-type stripe domain dynamics explain the amplified coercivity. Moreover, the granular CrTe2 devices on Si wafers display significantly enhanced magnetoresistance, more than doubling that of single-crystalline counterparts. Current-assisted magnetization switching, enabled by a substantial spin-orbit torque with a large spin Hall angle (85) and spin Hall conductivity (1.02 × 107 ℏ/2e Ω⁻¹ m⁻¹), is also demonstrated. These observations underscore the proficiency in manipulating crystallinity within integrated 2D magnetic films on Si wafers, paving the way for large-scale batch manufacturing of practical magnetoelectronic and spintronic devices, heralding a new era of technological innovation.

3.
Adv Mater ; : e2311949, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306214

RESUMO

Generation and control of topological spin textures constitutes one of the most exciting challenges of modern spintronics given their potential applications in information storage technologies. Of particular interest are magnetic insulators, which due to low damping, absence of Joule heating and reduced dissipation can provide energy-efficient spin-textures platform. Here, it is demonstrated that the interplay between sample thickness, external magnetic fields, and optical excitations can generate a prolific paramount of spin textures, and their coexistence in insulating CrBr3 van der Waals (vdW) ferromagnets. Using high-resolution magnetic force microscopy and large-scale micromagnetic simulation methods, the existence of a large region in T-B phase diagram is demonstrated where different stripe domains, skyrmion crystals, and magnetic domains exist and can be intrinsically selected or transformed to each-other via a phase-switch mechanism. Lorentz transmission electron microscopy unveils the mixed chirality of the magnetic textures that are of Bloch-type at given conditions but can be further manipulated into Néel-type or hybrid-type via thickness-engineering. The topological phase transformation between the different magnetic objects can be further inspected by standard photoluminescence optical probes resolved by circular polarization indicative of an existence of exciton-skyrmion coupling mechanism. The findings identify vdW magnetic insulators as a promising framework of materials for the manipulation and generation of highly ordered skyrmion lattices relevant for device integration at the atomic level.

4.
Nano Lett ; 24(8): 2481-2487, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373326

RESUMO

Comprehending the interaction between geometry and magnetism in three-dimensional (3D) nanostructures is important to understand the fundamental physics of domain wall (DW) formation and pinning. Here, we use focused-electron-beam-induced deposition to fabricate magnetic nanohelices with increasing helical curvature with height. Using electron tomography and Lorentz transmission electron microscopy, we reconstruct the 3D structure and magnetization of the nanohelices. The surface curvature, helical curvature, and torsion of the nanohelices are then quantified from the tomographic reconstructions. Furthermore, by using the experimental 3D reconstructions as inputs for micromagnetic simulations, we can reveal the influence of surface and helical curvature on the magnetic reversal mechanism. Hence, we can directly correlate the magnetic behavior of a 3D nanohelix to its experimental structure. These results demonstrate how the control of geometry in nanohelices can be utilized in the stabilization of DWs and control of the response of the nanostructure to applied magnetic fields.

5.
ACS Nano ; 18(5): 4216-4228, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38262067

RESUMO

Fe5-xGeTe2 is a promising two-dimensional (2D) van der Waals (vdW) magnet for practical applications, given its magnetic properties. These include Curie temperatures above room temperature, and topological spin textures─TST (both merons and skyrmions), responsible for a pronounced anomalous Hall effect (AHE) and its topological counterpart (THE), which can be harvested for spintronics. Here, we show that both the AHE and THE can be amplified considerably by just adjusting the thickness of exfoliated Fe5-xGeTe2, with THE becoming observable even in zero magnetic field due to a field-induced unbalance in topological charges. Using a complementary suite of techniques, including electronic transport, Lorentz transmission electron microscopy, and micromagnetic simulations, we reveal the emergence of substantial coercive fields upon exfoliation, which are absent in the bulk, implying thickness-dependent magnetic interactions that affect the TST. We detected a "magic" thickness t ≈ 30 nm where the formation of TST is maximized, inducing large magnitudes for the topological charge density (∼6.45 × 1020 cm-2), and the concomitant anomalous (ρxyA,max ≃22.6 µΩ cm) and topological (ρxyu,T 1≃5 µΩ cm) Hall resistivities at T ≈ 120 K. These values for ρxyA,max and ρxyu,T are higher than those found in magnetic topological insulators and, so far, the largest reported for 2D magnets. The hitherto unobserved THE under zero magnetic field could provide a platform for the writing and electrical detection of TST aiming at energy-efficient devices based on vdW ferromagnets.

6.
Nano Lett ; 24(5): 1531-1538, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38286029

RESUMO

Two-dimensional (2D) van der Waals magnets comprise rich physics that can be exploited for spintronic applications. We investigate the interplay between spin-phonon coupling and spin textures in a 2D van der Waals magnet by combining magneto-Raman spectroscopy with cryogenic Lorentz transmission electron microscopy. We find that when stable skyrmion bubbles are formed in the 2D magnet, a field-dependent Raman shift can be observed, and this shift is absent for the 2D magnet prepared in its ferromagnetic state. Correlating these observations with numerical simulations that take into account field-dependent magnetic textures and spin--phonon coupling in the 2D magnet, we associate the Raman shift to field-induced modulations of the skyrmion bubbles and derive the existence of inhomogeneity in the skyrmion textures over the film thickness.

7.
Nature ; 623(7988): 702-703, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37993577
8.
Nat Commun ; 14(1): 5501, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679317

RESUMO

Modern scanning microscopes can image materials with up to sub-atomic spatial and sub-picosecond time resolutions, but these capabilities come with large volumes of data, which can be difficult to store and analyze. We report the Fast Autonomous Scanning Toolkit (FAST) that addresses this challenge by combining a neural network, route optimization, and efficient hardware controls to enable a self-driving experiment that actively identifies and measures a sparse but representative data subset in lieu of the full dataset. FAST requires no prior information about the sample, is computationally efficient, and uses generic hardware controls with minimal experiment-specific wrapping. We test FAST in simulations and a dark-field X-ray microscopy experiment of a WSe2 film. Our studies show that a FAST scan of <25% is sufficient to accurately image and analyze the sample. FAST is easy to adapt for any scanning microscope; its broad adoption will empower general multi-level studies of materials evolution with respect to time, temperature, or other parameters.

15.
Nanoscale ; 15(27): 11506-11516, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37357732

RESUMO

It is critical to understand the effect of lattice geometry on the order parameter of a condensed matter system, as it controls phase transitions in such systems. Artificial spin ices (ASIs) are two-dimensional lattices of Ising-like nanomagnets that provide an opportunity to explore such phenomena by lithographically controlling the lattice geometry to observe its influence on magnetic ordering and frustration effects. Here we report a systematic approach to studying the effects of disorder in rhombus ASIs generated from combinations of five vertex motifs. We investigate four geometries characterized by a geometric order parameter, with symmetries ranging from periodic to quasiperiodic to random. Lorentz transmission electron microscopy data indicates magnetic domain behavior depends on chains of strongly-coupled islands in the periodic and sixfold-twinned lattices, while the behavior of the disordered lattice is dominated by vertex motifs with large configurational degeneracy. Utilizing micromagnetic simulations, a quantitative analysis of the lattice energetics showed that the experimental rotationally-demagnetized state of the disordered ASI was closer in energy to the idealized ground state compared to other periodic and twinned ASIs. Our work provides a unique pathway for using degeneracy, magnetic frustration, and order to control the magnetization behavior of designer disordered systems.

16.
Adv Mater ; 35(17): e2212087, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36780298

RESUMO

Fe5- x GeTe2 is a centrosymmetric, layered van der Waals (vdW) ferromagnet that displays Curie temperatures Tc (270-330 K) that are within the useful range for spintronic applications. However, little is known about the interplay between its topological spin textures (e.g., merons, skyrmions) with technologically relevant transport properties such as the topological Hall effect (THE) or topological thermal transport. Here, via high-resolution Lorentz transmission electron microscopy, it is shown that merons and anti-meron pairs coexist with Néel skyrmions in Fe5- x GeTe2 over a wide range of temperatures and probe their effects on thermal and electrical transport. A THE is detected, even at room T, that senses merons at higher T's, as well as their coexistence with skyrmions as T is lowered, indicating an on-demand thermally driven formation of either type of spin texture. Remarkably, an unconventional THE is also observed in absence of Lorentz force, and it is attributed to the interaction between charge carriers and magnetic field-induced chiral spin textures. These results expose Fe5-x GeTe2 as a promising candidate for the development of applications in skyrmionics/meronics due to the interplay between distinct but coexisting topological magnetic textures and unconventional transport of charge/heat carriers.

17.
Adv Mater ; 35(37): e2204944, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36579797

RESUMO

Deep learning has become ubiquitous, touching daily lives across the globe. Today, traditional computer architectures are stressed to their limits in efficiently executing the growing complexity of data and models. Compute-in-memory (CIM) can potentially play an important role in developing efficient hardware solutions that reduce data movement from compute-unit to memory, known as the von Neumann bottleneck. At its heart is a cross-bar architecture with nodal non-volatile-memory elements that performs an analog multiply-and-accumulate operation, enabling the matrix-vector-multiplications repeatedly used in all neural network workloads. The memory materials can significantly influence final system-level characteristics and chip performance, including speed, power, and classification accuracy. With an over-arching co-design viewpoint, this review assesses the use of cross-bar based CIM for neural networks, connecting the material properties and the associated design constraints and demands to application, architecture, and performance. Both digital and analog memory are considered, assessing the status for training and inference, and providing metrics for the collective set of properties non-volatile memory materials will need to demonstrate for a successful CIM technology.

18.
Nano Lett ; 22(19): 7804-7810, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36129969

RESUMO

The physics of phase transitions in two-dimensional (2D) systems underpins research in diverse fields including statistical mechanics, nanomagnetism, and soft condensed matter. However, many aspects of 2D phase transitions are still not well understood, including the effects of interparticle potential, polydispersity, and particle shape. Magnetic skyrmions are chiral spin-structure quasi-particles that form two-dimensional lattices. Here, we show, by real-space imaging using in situ cryo-Lorentz transmission electron microscopy coupled with machine learning image analysis, the ordering behavior of Néel skyrmion lattices in van der Waals Fe3GeTe2. We demonstrate a distinct change in the skyrmion size distribution during field-cooling, which leads to a loss of lattice order and an evolution of the skyrmion liquid phase. Remarkably, the lattice order is restored during field heating and demonstrates a thermal hysteresis. This behavior is explained by the skyrmion energy landscape and demonstrates the potential to control the lattice order in 2D phase transitions.

19.
ACS Nano ; 15(8): 12935-12944, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34279916

RESUMO

The effect of confinement on electron and ion transport in oxide films is of interest both fundamentally and technologically for the design of next-generation electronic devices. In metal oxides with mobile ions and vacancies, it is the interplay of the different modes of charge transport and the corresponding current-voltage signatures that is of interest. We developed a patterned structure in titania films, with feature sizes of 11-20 nm, that allow us to explore confined transport. We describe how confinement changes the competing charge transport mechanisms, the patterned antidot array leads to displacement fields and confines the charge density that results in modified and emergent electron transport with an increase in conductivity. This emergent behavior can be described by considering electron interference effects. Characterization of the charge transport with electron holography and impedance spectroscopy, and through comparison with modeling, show that nanoscale confinement is a way to control quantum interference.

20.
Nat Mater ; 19(8): 887-893, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32284599

RESUMO

A number of grain boundary phenomena in ionic materials, in particular, anomalous (either depressed or enhanced) charge transport, have been attributed to space charge effects. Developing effective strategies to manipulate transport behaviour requires deep knowledge of the origins of the interfacial charge, as well as its variability within a polycrystalline sample with millions of unique grain boundaries. Electron holography is a powerful technique uniquely suited for studying the electric potential profile at individual grain boundaries, whereas atom-probe tomography provides access to the chemical identify of essentially every atom at individual grain boundaries. Using these two techniques, we show here that the space charge potential at grain boundaries in lightly doped, high-purity ceria can vary by almost an order of magnitude. We further find that trace impurities (<25 ppm), rather than inherent thermodynamic factors, may be the ultimate source of grain boundary charge. These insights suggest chemical tunability of grain boundary transport properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...